Particle release and control of worker exposure during laboratory-scale synthesis, handling and simulated spills of manufactured nanomaterials in fume hoods

Ana S Fonseca, Eelco Kuijpers, Kirsten I Kling, Marcus Levin, Antti J Koivisto, Signe H Nielsen, W Fransman, Yijri Fedutik, Keld A Jensen, Ismo K Koponen

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Fume hoods are one of the most common types of equipment applied to reduce the potential of particle exposure in laboratory environments. A number of previous studies have shown particle release during work with nanomaterials under fume hoods. Here, we assessed laboratory workers' inhalation exposure during synthesis and handling of CuO, TiO2and ZnO in a fume hood. In addition, we tested the capacity of a fume hood to prevent particle release to laboratory air during simulated spillage of different powders (silica fume, zirconia TZ-3Y and TiO2). Airborne particle concentrations were measured in near field, far field, and in the breathing zone of the worker. Handling CuO nanoparticles increased the concentration of small particles (< 58 nm) inside the fume hood (up to 1 × 105 cm-3). Synthesis, handling and packaging of ZnO and TiO2nanoparticles did not result in detectable particle release to the laboratory air. Simulated powder spills showed a systematic increase in the particle concentrations inside the fume hood with increasing amount of material and drop height. Despite powder spills were sometimes observed to eject into the laboratory room, the spill events were rarely associated with notable release of particles from the fume hood. Overall, this study shows that a fume hood generally offers sufficient exposure control during synthesis and handling of nanomaterials. An appropriate fume hood with adequate sash height and face velocity prevents 98.3% of particles release into the surrounding environment. Care should still be made to consider spills and high cleanliness to prevent exposure via resuspension and inadvertent exposure by secondary routes.

Original languageEnglish
JournalJournal of Nanoparticle Research
Volume20
Issue number2
Pages (from-to)48
ISSN1388-0764
DOIs
Publication statusPublished - 2018

Keywords

  • exposure assessment
  • Inhalation exposure
  • fume hood
  • risk management
  • Nanomaterial
  • exposure control

Fingerprint

Dive into the research topics of 'Particle release and control of worker exposure during laboratory-scale synthesis, handling and simulated spills of manufactured nanomaterials in fume hoods'. Together they form a unique fingerprint.

Cite this